Linearized pseudo-Einstein equations on the Heisenberg group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fully Nonlinear Cr Invariant Equations on the Heisenberg Group

In this paper we provide a characterization of second order fully nonlinear CR invariant equations on the Heisenberg group, which is the analogue in the CR setting of the result proved in the Euclidean setting by A. Li and the first author in [21]. We also prove a comparison principle for solutions of second order fully nonlinear CR invariant equations defined on bounded domains of the Heisenbe...

متن کامل

Multiplicity of Solutions of Quasilinear Subelliptic Equations on Heisenberg Group

In this paper, a class of quasilinear elliptic equations on the Heisenberg Group is concerned. Under some suitable assumptions, by virtue of the nonsmooth critical point theory, the existence of infinitely many weak solutions of the problems is obtained. Mathematics Subject Classification: 35J20, 35J25, 65J67

متن کامل

On Pseudo-hermitian Einstein Spaces

We describe and construct here pseudo-Hermitian structures θ without torsion (i.e. with transversal symmetry) whose Webster-Ricci curvature tensor is a constant multiple of the exterior differential dθ. We call these structures pseudo-Hermitian Einstein and our result states that they all can be derived locally from Kähler-Einstein metrics. Moreover, we discuss the corresponding Fefferman metri...

متن کامل

Regularity Results for Quasilinear Elliptic Equations in the Heisenberg Group

We prove regularity results for solutions to a class of quasilinear elliptic equations in divergence form in the Heisenberg group H. The model case is the nondegenerate p-Laplacean operator

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2017

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2016.10.020